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SUMMARY

The resolution of the Saint-Venant equations for modelling shock phenomena in open-channel �ow by
using the second-order central schemes of Nessyahu and Tadmor (NT) and Kurganov and Tadmor (KT)
is presented. The performances of the two schemes that we have extended to the non-homogeneous case
and that of the classical �rst-order Lax–Friedrichs (LF) scheme in predicting dam-break and hydraulic
jumps in rectangular open channels are investigated on the basis of di�erent numerical and physical
conditions. The e�ciency and robustness of the schemes are tested by comparing model results with
analytical or experimental solutions. Copyright ? 2003 John Wiley & Sons, Ltd.

KEY WORDS: Saint-Venant equations; open-channel �ow; shock phenomena; central di�erence
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1. INTRODUCTION

Correctly representing and simulating shock phenomena involves considerable di�culties
but is of primary interest in hydraulic engineering as well as in other applied mathematical
analysis.
Assuming the shock phenomena in open-channel �ow to be appropriately described by the

non-linear set of hyperbolic Saint-Venant equations, past scienti�c contributions in this �eld
have been concerned with the schemes for the numerical integration of these equations, and
in particular with the so called shock-capturing schemes [1].
Many of these schemes use the Godunov approach [2], for which each time-step consists

of three stages: reconstruction, evolution and projection. With regard to the evolution stage,
we distinguish in the scienti�c literature between upwind and central Godunov-type schemes.
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Upwind schemes sample the reconstructed values at the mid-cells, whereas, central schemes
are based on staggered sampling at the interfacing break-points. Central schemes present the
principal advantage of simplicity in that no approximate Riemann solvers are involved in their
construction.
The �rst-order Lax–Friedrichs (LF) scheme [3, 4] is the forerunner of all the central

schemes, but its great numerical dissipation limits its use for modelling shock conditions.
A second-order extension of the LF scheme is presented in the Nessyahu–Tadmor (NT)
scheme [5]. In this model, the �rst-order piecewise constant solution of the LF scheme is
replaced by a MUSCL-type second-order piecewise linear approximation. As the complete
Saint-Venant equations contain a source term, we present a formulation of the NT scheme
for the non-homogeneous case. Recently, a new second-order Kurganov–Tadmor (KT) cen-
tral scheme has been introduced for solving homogeneous convection and convection–di�usion
equations [6]. In this scheme the evolution stage is performed by integrating over non-uniform
control volumes (cells), whose sizes are proportional to the local speeds of the propagation
of the wave. The evolved solution, after an additional reconstruction, is then projected back
onto the original grid.
In this paper, we have extended this central scheme also to the non-homogeneous case. The

integration in time of this scheme has been obtained by using a third-order TVD Runge–Kutta
method. The simplicity of application and the accuracy of the solutions of the NT and KT
central schemes in simulating shocks in open channel �ows, by using Saint-Venant equations,
are presented. These test cases present the results of simulations regarding dam-break and
hydraulic jump phenomena.
The paper is organized as follows. In Section 2 we recall the set of Saint-Venant equations

governing unsteady open-channel �ow. In Section 3 we recall the philosophy of Godunov-type
central schemes, the �rst-order LF scheme, the second-order NT schemes, and the �rst- and
second-order fully discrete and semi-discrete KT schemes. In Section 4 we present a series
of numerical simulations of dam-break and hydraulic jump tests cases, implemented by the
schemes of Section 3. Conclusions of this work are drawn in Section 5.

2. GOVERNING EQUATIONS

The mathematical basis of one-dimensional unsteady open-channel �ow is governed by Saint–
Venant equations. The set of partial di�erential, continuity and momentum equations, can be
written in the following form [7],

@A
@t
+
@Q
@x
=0 (1a)

@Q
@t
+
@
@x

(
Q2

A
+ gI1

)
= gI2 + gA(S0 − Sf ) (1b)

here, A=A(x; t) is the wetted cross-sectional area, Q=Q(x; t) the discharge, x is the spatial
co-ordinate, assumed positive along the �ow direction, t is the time, g the acceleration due
to gravity, S0 is the bed slope, and Sf the friction slope. Applying, for its evaluation, the
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Manning’s formula, we have

Sf =
n2mQ|Q|
A2R4=3

in which nm (m−1=3s) is the roughness coe�cient and R the hydraulic radius.
In Equation (1b), the term I1 represents the hydrostatic pressure force term, while I2 rep-

resents the pressure force due to longitudinal width variations which are expressed as

I1 =
∫ h(x; t)

0
(h− �)b(x; �) d�; I2 =

∫ h(x; t)

0
(h− �)@b(x; �)

@x
d�

where h is the water depth, � is the depth integration variable along the vertical axis, b
is the width of the cross section such that b(x; h)=B(x)= free surface width. In rectangular
channels with width B, we obtain I1 = 1

2 A
2=B and I2 = 0. It is possible to write the set of

Equations (1) in the following compact vectorial form

wt + fx(w)= z(w) (2)

here, wt := @w=@t, fx := @f=@x, and w, f, and z are, respectively, the conserved variable, the
�ux function, and the forcing term, expressed in this case by the following two component
vectors:

w=

[
A
Q

]
; f=


 Q
Q2

A
+ g

A2

2B


 ; z=

[
0

gA(S0 − Sf )

]
(3)

The Jacobian matrix J = @f=@w of this system is

J =


 0 1

g
A
B
− Q2

A2
2
Q
A


 =

[
0 1

c2 − u2 2u

]
(4)

where u=Q=A is the mean velocity and c=(gA=B)1=2 is the celerity. The eigenvalues of J
are

�1;2 = u± c (5a,b)

For width B=1, the vectors (3), may be written in the form

w=

[
h
hu

]
; f=

[
hu

hu2 + 1
2 gh

2

]
; z=

[
0

gh(S0 − Sf )

]
(6)

The set of Equations (2) are completed by the initial conditions w(x; t=0)=w0(x) and by
appropriate boundary conditions.

3. CENTRAL SCHEMES

The double integration in space and time over the rectangle Ix × [t; t + �t] of the set of
hyperbolic Equations (2), with Ix := [x −�x=2; x + �x=2], �x and �t being the space and
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time steps, respectively, gives

�w(x; t +�t) = �w(x; t)− 1
�x

[∫ t+�t

t
f
(
w
(
x +

�x
2
; t
))

dt −
∫ t+�t

t
f
(
w
(
x − �x

2
; t
))
dt

]

+
1
�x

∫ t+�t

t

∫ x+�x2

x−�x
2

z(w(x; t))dx dt (7)

where

�w(x; t) :=
1
�x

∫ x+�x2

x−�x
2

w(x; t)dx

indicates the sliding average of w(·; t). Equation (7) is the starting point of Godunov-type
general schemes for the integration of the set of Equations (2).
Now, if we construct a piecewise approximation v(·; t) of w(·; t), at the discrete time level

t n= n�t, in the form

w(x; t n)� v(x; t n)=∑
j
pnj (x)1Ij (8)

Here, {pnj } are algebraic polynomials supported in the discrete cells Ij := [xj−1=2; xj+1=2] with
cell boundaries in the points xj−1=2 :=(j− 1

2 )�x and xj+1=2 :=(j+
1
2)�x, and 1Ij is a function

which equals one inside the discrete cell Ij and zero outside Ij. The {pnj } polynomials are
centred around the midpoints xj= j�x so, in the cell interval Ij, we have �pj(x)=w(xj; t

n).
The time evolution of the piecewise approximation v(x; t n), on the basis of (7), reads

�v(x; t n+1) = �v(x; t n)− 1
�x

[∫ t n+1

tn
f
(
v
(
x +

�x
2
; t
))
dt −

∫ t n+1

t n
f
(
v
(
x − �x

2
; t
))
dt

]

+
1
�x

∫ t n+1

t n

∫ x+�x2

x−�x
2

z(v(x; t)) dx dt (9)

To construct a Godunov-type scheme, we apply (9) at discrete grid points. Here we distinguish
between two main methods, corresponding, respectively, to the upwind and central schemes,
according to the way of sampling Equation (9). The upwind schemes are obtained by sam-
pling (9) at the mid-cells, x= xj. This method uses non-staggered grids-cells [xj−1=2; xj+1=2]
for the evolution step, and must, therefore, rely on the solution of exact or approximate Rie-
mann problem solvers at the grid-cell interfaces, for calculating numerical �uxes. Instead,
the Godunov-type central schemes are based on sampling Equation (9) on the interfacing
breakpoints x= xj+1=2 [8]. For these schemes the space integration is performed on staggered
grid-cells [xj; xj+1]. The evolution scheme obtained in this case is

�vn+1j+1=2 = �v
n
j+1=2 −

1
�x

[∫ t n+1

t n
f(v(xj+1; t)) dt −

∫ t n+1

t n
f(v(xj; t)) dt

]
+Gnj+1=2 (10)
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in which the staggered averages �vnj+1=2 are given by

�vnj+1=2 =
1
�x

[∫ xj+1=2

xj
pnj (x) dx +

∫ xj+1

xj+1=2

pnj+1(x) dx

]
(11)

and the source terms are

Gnj+1=2 =
1
�x

∫ t n+1

t n

[∫ xj+1=2

xj
z(v(x; t)) dx +

∫ xj+1

xj+1=2

z(v(x; t)) dx

]
dt (12)

For these staggered methods, di�erently from the non-staggered methods, the numerical �uxes
are evaluated in smooth regions where no jump discontinuities occur, so Riemann problem
are no longer to be solved. Staggered methods, however, tend to smear out contact disconti-
nuities when small time steps are used. This implies that slowly moving waves will present a
large amount of di�usion. Di�erent schemes are obtained by changing the polynomial repre-
sentation pj(x) of the variables within each grid-cell, i.e. piecewise-constant, piecewise-linear,
piecewise-quadratic, which originate, respectively, �rst-order, second-order, and third-order
central schemes.

3.1. First-order Lax–Friedrichs (LF) scheme

The �rst-order LF central scheme [3, 4], is obtained from (10) to (12), by using for the
reconstruction step a piecewise constant polynomial form pnj (x)= �v

n
j =w

n
j of the variables

within the cell [xj−1=2; xj+1=2], and by considering constant (i.e. evaluated at time t= n�t) the
�uxes and the forcing terms in the integrals of (10) and (12), respectively. In this way we
obtain

�wn+1j+1=2 =
1
2
( �wnj + �wnj+1)− �[f(wnj+1)− f(wnj )] +

�t
2
[z(wnj ) + z(w

n
j+1)] (13)

where �=�t=�x is the �xed mesh ratio, and wnj :=w(xj; t
n)= �wnj .

The non-staggered cell-average at time t n+1, �wn+1j , obtained as the average of two neigh-
bouring staggered cell-averages reads [11]

�wn+1j :=
1
2
( �wn+1j−1=2 + �wn+1j+1=2)=

1
4
( �wnj−1 + 2 �w

n
j + �wnj+1)

− �
2
[f(wnj+1)− f(wnj−1)] +

�t
4
[z(wnj−1) + 2z(w

n
j ) + z(w

n
j+1)] (14)

Equations (13) and (14) constitute the two-step explicit procedure of the LF central scheme.
The schematic representation of this scheme is given in Figure 1.

3.2. Second-order Nessyahu–Tadmor (NT) scheme

A natural extension of the LF scheme is the second-order NT scheme [5], also de�ned
by Erbes [9], high-resolution Lax–Friedrichs scheme. For this method, the piecewise-linear
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Figure 1. Lax–Friedrichs scheme.

MUSCL-type approximation [10] on the cell Ij := [xj−1=2; xj+1=2] is used

pnj (x) =w
n
j + (x − xj)(wx)nj ; xj−1=26x6xj+1=2 (15a)

w(x; t n)�∑
j
pj(x)1Ij (15b)

here, �pnj (x)= �wnj =w
n
j is the computed cell average and (wx)

n
j indicates an approximation of

the exact derivative wx(xj; t n). A possible computation of (wx)nj is given by the family of
discrete derivatives parameterized with 16�62; i.e. for any grid function {wj} we set [11]

(wx)nj =MM{�(wnj+1 − wnj )=�x; (wnj+1 − wnj−1)=2�x; �(wnj − wnj−1)=�x} (16)

here, MM denotes the MinMod non-linear limiter function, de�ned as

MM{x1; x2; : : :}=



minj{xj} if xj¿0; ∀j
maxj{xj} if xj¡0; ∀j
0 otherwise

(17)

The evolution in time of the interpolant (15) over the staggered cells to the next time step,
t n+1, obtained by (10)–(12), gives the following two-step predictor–corrector form of the
NT scheme

wn+1=2j =wnj − �t
2

[f(wnj+1)− f(wnj )
�x

− z(wnj )
]

(18a)

�wn+1j+1=2 =
1
2
( �wnj + �wnj+1) +

�x
8
[(wx)nj − (wx)nj+1]− �[f(wn+1=2j+1 )− f(wn+1=2j )]

+
�t
4
[z(wn+1=2j ) + z(w−n+1=2

j+1=2 ) + z(w+n+1=2j+1=2 ) + z(wn+1=2j+1 )] (18b)
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here, the values of wn+1=2j and wn+1=2j+1 are computed by (18a) by using Taylor’s series [5],
and Equation (2), moreover, the derivatives (wx)nj , (wx)

n
j+1 are evaluated by (16). The �ux

and source terms are considered constant in time and evaluated at time t n+1=2, moreover, we
have assumed the source term, z(w(x; t)), to have a linear behaviour in terms of x inside the
intervals [xj; xj+1=2] and [xj+1=2; xj+1]. The left and right values of w at point xj+1=2 are

w−n+1=2
j+1=2 =wn+1=2j +

�x
2
(wx)

n+1=2
j (19a)

w+n+1=2j+1=2 =wn+1=2j+1 − �x
2
(wx)

n+1=2
j+1 (19b)

where (wx)
n+1=2
j and (wx)

n+1=2
j+1 are evaluated by (16). A di�erent formulation of the source

term, based on the integration in the interval [xj; xj+1] inside which a linear behaviour assumed
in terms of x for z, has been presented in Reference [12].
In order to transform the staggered second-order scheme (18b) into a non-staggered scheme,

as a �rst step, we reconstruct a piecewise-linear interpolant through the calculated staggered
cell-averages at time t n+1,

wn+1j±1=2 = �wn+1j±1=2 + (wx)
n+1
j±1=2(x − xj±1=2) (20)

as a second step, the cell-averages at the next time step, �wn+1j , are obtained by averaging this
interpolant, resulting in the following non-staggered corrector scheme [11]

�wn+1j =
1
�x

[∫ xj

xj−1=2

wn+1j−1=2 dx +
∫ xj+1=2

xj
wn+1j+1=2 dx

]

=
1
4
( �wnj−1 + 2 �w

n
j + �wnj+1)−

�x
16
[(wx)nj+1 − (wx)nj−1]

− �
2
[f(wn+1=2j+1 )− f(wn+1=2j−1 )]− �x

8
[(wx)n+1j+1=2 − (wx)n+1j−1=2]

+
�t
8
[z(wn+1=2j−1 ) + 2z(wn+1=2j ) + z(wn+1=2j+1 )

+ z(w−n+1=2
j−1=2 ) + z(w+n+1=2j−1=2 ) + z(w

−n+1=2
j+1=2 ) + z(w+n+1=2j+1=2 )] (21a)

where

(wx)n+1j−1=2 =
1
�x

MM( �wn+1j+1=2 − �wn+1j−1=2; �w
n+1
j−1=2 − �wn+1j−3=2) (21b)

Here, MM is the MinMod non-linear limiter de�ned in (17), and (wx)n+1j+1=2 is obtained by
replacing j+1 in place of j in all the RHS terms of (21b). Equations (18a), (18b) and (19)
constitute the three-step explicit procedure of the NT central scheme. A schematic represen-
tation of this scheme is given in Figure 2.
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Figure 2. Nessyahu–Tadmor scheme.

3.3. First- and second-order Kurganov–Tadmor (KT) schemes

In the NT schemes, the length of the spatial cells �x remains constant in time, whereas,
in the new central schemes KT, proposed by Kurganov and Tadmor [6], for solving the
homogeneous case of (2), the space steps are not constant in time, and their lengths are
computed following the local values of the propagation wave celerities. For each time step
�t= t n+1 − t n, the reconstruction is obtained by using the piecewise-linear polynomial of
Equations (15) for the cells �xj+1=2 and �xj de�ned by

�xj+1=2 := xnj+1=2; r − xnj+1=2; l; �xj := xnj+1=2; l − xnj−1=2; r (22a)

where

xnj±1=2; l := x
n
j±1=2 − anj±1=2�t; xnj±1=2; r := x

n
j±1=2 + a

n
j±1=2�t (22b)

Here, aj+1=2 is the maximum value of the propagation celerity of the point xj+1=2, de�ned by

aj+1=2 := max{�(J (w+j+1=2)); �(J (w−
j+1=2))} (23)

where �(J ) := maxi |�i|, in which �i are the eigenvalues of the Jacobian matrix J given by
(5), and the right and left values of w at point xj+1=2 are, respectively,

w+j+1=2 :=p
n
j+1(xj+1=2)=w

n
j+1 −

1
2
(wx)nj+1�x (24a)

w−
j+1=2 :=p

n
j (xj+1=2)=w

n
j +

1
2
(wx)nj�x (24b)

Here, the approximate derivative (wx)nj is given by

(wx)nj =
1
�x

MM(wnj − wnj−1; wnj+1 − wnj ) (25)
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For each time step, we start from the following piecewise linear polynomial approximation at
time level t= t n := n�t

w(x; t n)=
∑
j
pnj (x)1Ij ; pnj (x) :=w

n
j + (x − xj)(wx)nj ; Ij := [xj−1=2; xj+1=2] (26)

where �pnj (x)=w
n
j = �wnj . By using (10), where for the homogeneous case the source term

Gj+1=2 = 0, we proceed with the exact evaluation of cell averages !n+1j+1=2; !n+1j at t n+1, based
on the integration over the space intervals [xj+1=2; l; xj+1=2; r], and [xj−1=2; r ; xj+1=2; l], respectively.
Moreover, by using the midpoint rule to approximate the �ux integrals on RHS of (10), we
obtain [6]

!n+1j+1=2 :=
1

�xj+1=2

∫ xj+1=2; r

xj+1=2; l

w(x; t n+1) dx

=
wnj + w

n
j+1

2
+
�x − anj+1=2�t

4
((wx)nj − (wx)nj+1)

− 1
2anj+1=2

[f(wn+1=2j+1=2; r)− f(wn+1=2j+1=2; l)] (27a)

!n+1j :=
1
�xj

∫ xj+1=2; l

xj−1=2; r

w(x; t n+1) dx

= wnj +
�t
2
(anj−1=2 − anj+1=2)(wx)nj

− �
1− �(anj−1=2 + anj+1=2)

[f(wn+1=2j+1=2; l)− f(wn+1=2j+1=2; r)] (27b)

Here, the midpoint values are obtained by the corresponding Taylor expansion

wn+1=2j+1=2; l :=w
n
j+1=2; l −

�t
2
fx(wnj+1=2; l); wnj+1=2; l :=w

n
j +�x(wx)

n
j

(
1
2
− �anj+1=2

)
(28a)

wn+1=2j+1=2; r :=w
n
j+1=2; r −

�t
2
fx(wnj+1=2; r); wnj+1=2; r :=w

n
j+1 −�x(wx)nj+1

(
1
2
− �anj+1=2

)
(28b)

Now to obtain the averages over the original, non-staggered cells [xj−1=2; xj+1=2], we use
the following piecewise linear reconstruction over the non-uniform cells at t= t n+1, and we
project its averages back onto the original uniform grid

!̃(x; t n+1) :=
∑
j
{[!n+1j+1=2 + (wx)

n+1
j+1=2(x − xj+1=2)]1[xnj+1=2; l ; xnj+1=2; r ] + !n+1j 1[xnj−1=2; r ; xj+1=2; l]} (29)
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Figure 3. Kurganov–Tadmor scheme.

Here, the spatial derivative wx(xj+1=2; t n+1) is approximated by

(wx)n+1j+1=2 =
2
�x

MM

(
!n+1j+1 −!n+1j+1=2

1 + �(anj+1=2 − anj+3=2)
;

!n+1j+1=2 −!n+1j

1 + �(anj+1=2 − anj−1=2)

)
(30)

Finally, the fully discrete second-order central KT scheme is obtained by averaging the ap-
proximate solution in (27) into the non-staggered cells [xj−1=2; xj+1=2]. In this way we obtain

wn+1j =
1
�x

∫ xj+1=2

xj−1=2

!̃(x; t n+1) dx=�anj−1=2!
n+1
j−1=2 + [1− �(anj−1=2 + anj+1=2)]!n+1j

+�anj+1=2!
n+1
j+1=2 +

�x
2
[(�anj−1=2)

2(wx)n+1j−1=2 − (�anj+1=2)2(wx)n+1j+1=2] (31)

where the intermediate value, !n+1j−1=2, the spatial derivative, (wx)
n+1
j−1=2, the midvalues, w

n+1=2
j−1=2; l,

wn+1=2j−1=2; r are readily obtained from (27a), (30), (28a) and (28b), respectively, by replacing
j− 1 in place of j in all the space indices of their RHS terms. A schematic representation of
the KT scheme is given in Figure 3.
The following �rst-order version of the KT scheme, originally attributed to Rusanov [6], is

obtained from (31) by setting both the slopes, (wx)nj and (wx)
n
j+1 to be zero, as can be seen

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:841–861
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by inspecting (27) and (28),

wn+1j =wnj − �
2
[f(wnj+1)− f(wnj−1)] +

1
2
[�anj+1=2(w

n
j+1 − wnj )− �anj−1=2(wnj − wnj−1)] (32)

3.3.1. Semi-discrete formulation of KT schemes. If we substitute into the fully discrete
second-order KT central scheme (31) the terms of the cell averages, !n+1j±1=2, !

n+1
j , and if

we note that as �t→ 0 the midvalues on the right of Equations (28) approach to

wn+1=2j+1=2; l→wj(t) +
�x
2
(wx)j(t) =: w−

j+1=2(t)

wn+1=2j+1=2; r →wj+1(t)− �x
2
(wx)j+1(t) =: w+j+1=2(t)

(33)

We obtain from (31), as �t→ 0, the semi-discrete second-order KT central scheme [6, 13]

d
dt
wj(t) =− 1

2�x
[(f(w+j+1=2(t)) + f(w

−
j+1=2(t)))− (f(w+j−1=2(t)) + f(w−

j−1=2(t)))]

+
1
2�x

{aj+1=2(t)[w+j+1=2(t)− w−
j+1=2(t)]− aj−1=2(t)[w+j−1=2(t)− w−

j−1=2(t)]} (34)

which can also be written in the following conservative form

d
dt
wj(t)= − Hj+1=2(t)−Hj−1=2(t)

�x
(35)

with the numerical �uxes given by

Hj±1=2(t)=
f(w+j±1=2(t)) + f(w

−
j±1=2(t))

2
− aj±1=2(t)

2
[w+j±1=2(t)− w−

j±1=2(t)] (36)

Here, the intermediate values w±
j±1=2 are given by Taylor expansions

w+j+1=2(t) :=wj+1(t)−
�x
2
(wx)j+1(t); w−

j+1=2(t) :=wj(t) +
�x
2
(wx)j(t) (37a)

w+j−1=2(t) :=wj(t)−
�x
2
(wx)j(t); w−

j−1=2(t) :=wj−1(t) +
�x
2
(wx)j−1(t) (37b)

Now, starting from the full discrete �rst-order KT central scheme (34) and setting �t→ 0,
we obtain the corresponding semi-discrete �rst-order central KT scheme [6],

d
dt
wj(t) =−f(wj+1(t)− f(wj−1(t))

2�x

+
1
2�x

[aj+1=2(t)(wj+1(t)− wj(t))− aj−1=2(t)(wj(t)− wj−1(t))] (38)
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Semi-discrete schemes are particularly important for solving multidimensional non-linear con-
servation law and convection–di�usion problems. Some di�culties due to the numerical dissi-
pation arise in using small time steps, with NT or LF schemes. When a semi-discrete scheme
is coupled with an e�ective ordinary di�erential equation (ODE) solver, it is possible to over-
come the numerical viscosity proportional to the vanishing size of the time step �t, but,
unfortunately, NT and LF schemes do not admit a semi-discrete form.

3.3.2. Extension of the KT scheme to the non-homogeneous case. A possible extension to
the semi-discrete KT central scheme when a source term is present reads

d
dt
wj(t)= − Hj+1=2(t)−Hj−1=2(t)

�x
+Gj(t) (39)

where, assuming for the forcing term z a linear behaviour in terms of x inside the integration
intervals, we obtain,

Gj(t) =
1
�x

[∫ xj+1=2; l

xj−1=2; r

z(w(x; t)) dx +
∫ xj+1=2; r

xj+1=2; l

z(w(x; t)) dx

]

� 1
2�x

[(z(wn+1=2j−1=2; r) + z(w
n+1=2
j+1=2; l))�xj + (z(w

n+1=2
j+1=2; l) + z(w

n+1=2
j+1=2; r))�xj+1=2] (40)

here, the midpoint values are obtained from the corresponding Taylor expansions

wn+1=2j±1=2; r =w
n
j±1=2; r −

�t
2
[fx(wnj±1=2; r)− z(wnj±1=2; r)] (41a)

wn+1=2j±1=2; l =w
n
j±1=2; l −

�t
2
[fx(wnj±1=2; l)− z(wnj±1=2; l)] (41b)

Now, by setting �t → 0, from (41) and (22b), we obtain

wn+1=2j±1=2; r =w
+
j+1=2(t); wn+1=2j±1=2; l=w

−
j+1=2(t)

In this way, the discretization of the source term (40) becomes

Gj(t) =
1
2�x

[(z(w+j−1=2(t)) + z(w
−
j+1=2(t)))�xj + (z(w

−
j+1=2(t)) + z(w

+
j+1=2(t)))�xj+1=2] (42)

3.3.3. Time integration of KT scheme. The integration in time of the set of ODE of the
homogeneous and non-homogeneous semi-discrete second-order KT central schemes (35),
and (39) represented as

dw
dt
= ‘(w) (43)
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was performed by means of the following third-order TVD Runge–Kutta method, proposed
by Shu and Osher [14],

w0 =wn

w1 =w0 + �t ‘(w0)

w2 =
3
4
w0 +

1
4
w1 +

1
4
�t ‘(w1) (44)

w3 =
1
3
w0 +

2
3
w2 +

2
3
�t ‘(w2)

wn+1 =w3

Here, wn stands for the variable vector evaluated at the time t = n�t.
In the following numerical tests we have indicated by KT3 the semi-discrete KT central

scheme, which uses for integration in time the third-order Runge–Kutta method of Shu and
Osher, by NT the second-order Nessyahu and Tadmor scheme, and by LF the �rst-order Lax
and Friedrichs scheme.

4. NUMERICAL APPLICATIONS

Dam-break and hydraulic jump phenomena, in idealized and real cases, have been simu-
lated by using the above outlined LF, NT, and KT3 numerical schemes. We used for all
tests a Courant number, Cr= max |�i|�t=�x=0:9. The results of the numerical tests with
Cr=0:5 have not pointed out relevant di�erences between NT and KT3 schemes, whereas,
LF scheme gave slight dissipative solutions. We have assumed �=1:4 as the optimal value
to be used in (16) for the evaluation of the numerical derivatives in the NT scheme. It
must be noted that �=2 corresponds to the least dissipative condition, whereas, �=1 corre-
sponds to the most dissipative condition, which allows to avoid oscillations in the numerical
solutions.

4.1. Idealized dam-break problem

In these tests we compare the analytical solutions with the numerical results obtained by the
LF, NT, and KT3 schemes for an idealized dam-break problem for a rectangular, horizontal,
and frictionless channel of length L=1000 m. At the middle length of this channel there is
initially located a dam. We indicate the water depth upstream and downstream of this dam,
respectively, by hu = h(x; 0) for x6500 m, and hd = h(x; 0) for x¿500 m. In the �rst set of
the tests we used hu = 10 m and hd = 0:1 m (depth ratio hu=hd = 100) and, for the second
set, hd = 0 (depth ratio hu=hd =∞). For all the tests we assumed u(x; 0)=0. For boundary
conditions we assumed u(0; t)= u(L; t)=0.
At time t=0, the dam is supposed to fully collapse instantaneously. In Figures 4–6 the

results (depth and velocity) of the numerical simulations with LF, NT and KT3 schemes,
for hu=hd = 100 and grid points N =1000 are compared with the analytical solution [15] at
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Figure 4. Depth ratio hu=hd = 100. Water pro�le (a) and velocity (b), for LF scheme, at t=25 s.

Figure 5. Depth ratio hu=hd = 100. Water pro�le (a) and velocity (b) for NT scheme, at t=25 s.

t=25 s. Analogously, the results of the simulations, for hu=hd =∞ and N =1000, at t=15 s,
are shown in Figures 7–9.
For evaluating the goodness of the approximation of the various schemes, the L2-relative

error

�h=
[∑

i(h
n − he)2∑
i(he)2

]1
2
× 100 (45)

was used. Here, hn and he are the simulated and the exact depth, respectively. Analogous
evaluation parameter �v was used for evaluating the goodness of the velocity. The numerical

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:841–861



CENTRAL SCHEMES FOR OPEN CHANNEL FLOW 855

Figure 6. Depth ratio hu=hd = 100. Water pro�le (a) and velocity (b) for KT3 scheme, at t=25 s.

Figure 7. Depth ratio hu=hd =∞. Water pro�le (a) and velocity (b) for LF scheme, at
t=15 s (uexmax = 19:220 m=s, uLFmax = 14:981 m=s).

values obtained by the di�erent models, in terms of the number of grid points N , used for
the simulations, are summarized in Tables I and II.
From these tables we can see that the values of the �h and �v errors, as function of the

number of grid points N , are very similar for the NT and KT3 schemes, whereas, those
obtained by the LF scheme are greater than those obtained by the NT and KT3 schemes.

4.2. Dam-break experiment

In this test, we compare the laboratory dam-break experimental results of the Waterway Ex-
periment Station (W.E.S.), U.S. Army Corps of Engineers [16], with the numerical simulations

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:841–861



856 G. GOTTARDI AND M. VENUTELLI

Figure 8. Depth ratio hu=hd =∞. Water pro�le (a) and velocity (b) for NT scheme, at
t=15 s (uexmax = 19:220 m=s, uNTmax = 18:601 m=s).

Figure 9. Depth ratio hu=hd =∞. Water pro�le (a) and velocity (b) for KT3 scheme, at
t=15 s (uexmax = 19:220 m=s, uKT3max = 19:349 m=s).

obtained by LF, NT and KT3 schemes. The tests refer to a rectangular channel, 122m long and
1:22 m wide, with bottom slope S0 = 0:005 and a Manning coe�cient nm=0:0085 (m−1=3 s).
The water depth upstream of the dam, placed at the middle length, is 0:305m and the down-
stream is zero. The grid size �x is 0:5 m. Figures 10 show the measured and the simulated
water pro�les along the centreline of the �ume at t=10 (a), 20 (b), and 30s (c), respectively.
The hydrographs for the section at x=48:8 (a), 61.0 (b), 68.5 (c), 70.1 (d) and 87:0 m (e),
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Table I. Depth ratio hu=hd = 100: �h and �v, at t=25 s, in term of N , for the various schemes.

N LF NT KT3

�h
250 4.402141 1.118037 9.7900E-1
500 3.441963 6.5036E-1 6.0018E-1
1000 2.589958 3.4073E-1 3.5410E-1
2000 2.016159 2.1675E-1 2.7500E-1
4000 1.582103 2.0940E-1 1.6879E-1
8000 1.210521 1.1429E-1 1.1474E-1

�v
250 15.068930 5.400775 6.043134
500 15.684550 4.141970 4.219201
1000 13.727794 3.693018 3.358874
2000 12.121000 2.709816 3.443914
4000 10.293944 1.371508 1.595128
8000 8.223022 1.093976 1.589934

Table II. Depth ratio hu=hd =∞: �h and �v, at t=15 s, in term of N , for the various schemes.

N LF NT KT3

�h
250 3.400637 8.2128E-1 8.3571E-1
500 2.317644 4.1782E-1 4.2727E-1
1000 1.541604 2.0874E-1 2.1734E-1
2000 1.003548 1.0224E-1 1.1014E-1
4000 6.4198E-1 4.9248E-2 5.5776E-2
8000 4.0512E-1 2.3833E-2 2.8261E-2

�v
250 45.252220 23.38548 20.57145
500 46.863830 27.32224 23.63476
1000 46.692930 25.69966 18.62127
2000 45.482330 21.72660 13.30657
4000 42.420654 16.38841 8.67526
8000 38.681823 11.32689 5.57758

respectively, are shown in Figures 11. These tests show good agreement between experimental
and simulated results, also if the better comparison with the experimental data is obtained by
the NT and KT3 schemes.

4.3. Hydraulic jump problem

In these tests the hydraulic jump is simulated. The results of these simulations, obtained by
LF, NT, and KT3 schemes, are compared with the laboratory experiments on a rectangular
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Figure 10. Water surface pro�les at t=10 (a), 20 (b) and 30 s (c).

channel, width B=0:46m and length L=14m, with bed slope S0 = 0 and Manning’s roughness
coe�cient nm=0:008 (m−1=3 s) [17]. The space interval �x=0:1 m was used.
In the �rst test, with a Froude number Fr=4:23, the following initial and boundary condi-

tions were used: u(x; 0)=2:737m=s, h(x; 0)=0:043m, and h(0; t)=0:043m, u(L; t)=0:530m=s.
The steady-state water pro�les for the three methods, reached at time of about t=150 s, with
h(L; 150)=0:222 m, are shown in Figure 12.
In the second test, with Fr=6:65, we have used the following initial and boundary con-

ditions: u(0; x)=3:255 m=s, h(x; 0)=0:024 m, and h(0; t)=0:024 m, u(L; t)=0:401 m=s. The
steady-state water pro�les of these simulations, with h(L; t)=0:195m, are shown in Figure 13.
From the results shown in Figures 11 and 12, we can observe an acceptable similarity between
experimental and simulated results.

5. CONCLUSIONS

The results obtained by using LF, NT and KT3 central schemes, to integrate the Saint-Venant
equations for modelling dam-break and jump phenomena in open-channel �ow, lead to the
following conclusions:

1. The presented approximated extension of the NT and KT methods to the non-
homogeneous case seems to have not reduced the accuracy obtained by these meth-
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Figure 11. Hydrographs at points: x=48:8 (a), 61.0 (b), 68.5 (c) 70.1 (d) and 87:0 m (e).

ods in the homogeneous cases. However it can be seen, by comparing the results of the
idealized dam-break problem with the other test cases presented.

2. The NT and KT central schemes may be used for accurately modelling shock phe-
nomena in open-channel �ow governed by the non-linear set of homogeneous and non-
homogeneous hyperbolic Saint-Venant equations.

3. The results obtained by the second-order NT scheme and the third-order in time KT3
scheme are comparable, whereas, as expected, the LF scheme gives slight dissipative
solutions.
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Figure 12. Hydraulic jump for Fr=4:23.

Figure 13. Hydraulic jump for Fr=6:65.

4. Further experimentation of these methods in engineering problems may be necessary
in solving two-dimensional overland �ow and non-linear convention–di�usion transport
problems.
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